A Discrete Blaschke Theorem for Convex Polygons in 2-Dimensional Space Forms

Let $M$ be a $2$-dimensional space form. Let $P$ be a convex polygon in $M$. For these polygons, we define (and justify) a curvature $\kappa _i$ at each vertex $A_i$ of the polygon and prove the following Blaschke-type theorem: “If $P$ is a convex polygon in $M$ with curvature at its vertices $\kapp...

Full description

Saved in:
Bibliographic Details
Date:2024
Main Authors: Borisenko, Alexander, Miquel, Vicente
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1067
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Description
Summary:Let $M$ be a $2$-dimensional space form. Let $P$ be a convex polygon in $M$. For these polygons, we define (and justify) a curvature $\kappa _i$ at each vertex $A_i$ of the polygon and prove the following Blaschke-type theorem: “If $P$ is a convex polygon in $M$ with curvature at its vertices $\kappa _i\ge \kappa _0 >0$, then the circumradius $R$ of $P$ satisfies $\textrm{ta}_\lambda(R) \le \pi/(2\kappa _0)$ and the equality holds if and only if the polygon is a doubly covered segment”. Mathematical Subject Classification 2020:  52A10, 52A55, 51M10, 53C22