A Reilly Type Integral Formula Associated with Diffusion-Type Operators and Its Applications
In this paper, we derive a Reilly type formula for the diffusion-type operator $\mathcal{L}\cdot=\frac{1}{B}\textrm{div}(A\nabla\cdot)$ on weighted manifolds with boundary, where $A$ and $B$ are two positive smooth functions on manifolds. As its applications, some inequalities of Poincaré type, Cole...
Saved in:
| Date: | 2024 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2024
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1071 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, Geometry| Summary: | In this paper, we derive a Reilly type formula for the diffusion-type operator $\mathcal{L}\cdot=\frac{1}{B}\textrm{div}(A\nabla\cdot)$ on weighted manifolds with boundary, where $A$ and $B$ are two positive smooth functions on manifolds. As its applications, some inequalities of Poincaré type, Colesanti type, Minkowski type and Heintze-Karcher type are provided.
Mathematical Subject Classification 2020: 53C21, 58J32 |
|---|