On the Growth of the Resolvent of a Toeplitz Operator

We study the growth of the resolvent of a Toeplitz operator $T_b$, defined on the Hardy space, in terms of the distance to its spectrum $\sigma(T_b)$. We are primarily interested in the case when the symbol $b$ is a Laurent polynomial (i.e.,  the matrix $T_b$ is banded). We show that for an arbitrar...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Golinskii, Leonid, Kupin, Stanislas, Vishnyakova, Anna
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1086
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:We study the growth of the resolvent of a Toeplitz operator $T_b$, defined on the Hardy space, in terms of the distance to its spectrum $\sigma(T_b)$. We are primarily interested in the case when the symbol $b$ is a Laurent polynomial (i.e.,  the matrix $T_b$ is banded). We show that for an arbitrary such symbol the growth of the resolvent is quadratic (3.1), and under certain additional assumption it is linear (2.1). We also prove the quadratic growth of the resolvent for a certain class of non-rational symbols. Mathematical Subject Classification 2020: 47B35, 30H10, 47G10