On the Growth of the Resolvent of a Toeplitz Operator

We study the growth of the resolvent of a Toeplitz operator $T_b$, defined on the Hardy space, in terms of the distance to its spectrum $\sigma(T_b)$. We are primarily interested in the case when the symbol $b$ is a Laurent polynomial (i.e.,  the matrix $T_b$ is banded). We show that for an arbitrar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
Hauptverfasser: Golinskii, Leonid, Kupin, Stanislas, Vishnyakova, Anna
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1086
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:We study the growth of the resolvent of a Toeplitz operator $T_b$, defined on the Hardy space, in terms of the distance to its spectrum $\sigma(T_b)$. We are primarily interested in the case when the symbol $b$ is a Laurent polynomial (i.e.,  the matrix $T_b$ is banded). We show that for an arbitrary such symbol the growth of the resolvent is quadratic (3.1), and under certain additional assumption it is linear (2.1). We also prove the quadratic growth of the resolvent for a certain class of non-rational symbols. Mathematical Subject Classification 2020: 47B35, 30H10, 47G10