Rigidity of Closed Convex Hypersurfaces in Multidimensional Spaces of Constant Curvature

In 1972, E.P. Sen'kin generalized the celebrated theorem of A.V. Pogorelov on the unique determination of closed convex surfaces by their intrinsic metrics in the Euclidean three-dimensional space $E^3$ to higher dimensional Euclidean spaces $E^{n+1}$ under a mild assumption on the smoothness o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
1. Verfasser: Borisenko, Alexander A.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1105
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:In 1972, E.P. Sen'kin generalized the celebrated theorem of A.V. Pogorelov on the unique determination of closed convex surfaces by their intrinsic metrics in the Euclidean three-dimensional space $E^3$ to higher dimensional Euclidean spaces $E^{n+1}$ under a mild assumption on the smoothness of hypersurfaces. In this paper, we remove that assumption and thereby establish a rigidity result for arbitrary closed convex hypersurfaces in $E^{n+1}$, $n \ge 3$. We also prove similar results in other model spaces of constant curvature. Mathematical Subject Classification 2020: 52A10, 52A55, 51M10, 53C22