Rigidity of Closed Convex Hypersurfaces in Multidimensional Spaces of Constant Curvature
In 1972, E.P. Sen'kin generalized the celebrated theorem of A.V. Pogorelov on the unique determination of closed convex surfaces by their intrinsic metrics in the Euclidean three-dimensional space $E^3$ to higher dimensional Euclidean spaces $E^{n+1}$ under a mild assumption on the smoothness o...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2025
|
| Теми: | |
| Онлайн доступ: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1105 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Journal of Mathematical Physics, Analysis, Geometry |
Репозитарії
Journal of Mathematical Physics, Analysis, Geometry| Резюме: | In 1972, E.P. Sen'kin generalized the celebrated theorem of A.V. Pogorelov on the unique determination of closed convex surfaces by their intrinsic metrics in the Euclidean three-dimensional space $E^3$ to higher dimensional Euclidean spaces $E^{n+1}$ under a mild assumption on the smoothness of hypersurfaces. In this paper, we remove that assumption and thereby establish a rigidity result for arbitrary closed convex hypersurfaces in $E^{n+1}$, $n \ge 3$. We also prove similar results in other model spaces of constant curvature.
Mathematical Subject Classification 2020: 52A10, 52A55, 51M10, 53C22 |
|---|