On Shimurian Generalizations of the Stack $BT_1 \otimes\mathbb{F}_p$

Let $G$ be a smooth group scheme over $\mathbb{F}_p$ equipped with a $\mathbb{G}_m$-action such that all weights of $\mathbb{G}_m$ on $\textrm{Lie} (G)$ are $\le 1$. Let $\textrm{Disp}_n^G$ be Eike Lau's stack of $n$-truncated $G$-displays (this is an algebraic $\mathbb{F}_p$-stack). In the cas...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Author: Drinfeld, Vladimir
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1106
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Description
Summary:Let $G$ be a smooth group scheme over $\mathbb{F}_p$ equipped with a $\mathbb{G}_m$-action such that all weights of $\mathbb{G}_m$ on $\textrm{Lie} (G)$ are $\le 1$. Let $\textrm{Disp}_n^G$ be Eike Lau's stack of $n$-truncated $G$-displays (this is an algebraic $\mathbb{F}_p$-stack). In the case $n=1$ we introduce an algebraic stack equipped with a morphism to $\textrm{Disp}_1^G$. We conjecture that if $G=GL(d)$ then the new stack is canonically isomorphic to the reduction modulo $p$ of the stack of $1$-truncated Barsotti-Tate groups of height $d$ and dimension $d'$, where $d'$ depends on the action of $\mathbb{G}_m$ on $GL(d)$. We also discuss how to define an analog of the new stack for $n>1$ and how to replace $\mathbb{F}_p$ by $\mathbb{Z}/p^m\mathbb{Z}$. Mathematical Subject Classification 2020: 14F30