On Conformal Metrics of Constant Positive Curvature in the Plane
We prove three theorems about solutions of $\Delta u+e^{2u}=0$ in the plane. The first two describe explicitly all concave and quasiconcave solutions. The third theorem says that the diameter of the plane with respect to the metric with line element $e^{u}|dz|$ is at least $4\pi/3$, except for two e...
Saved in:
| Date: | 2023 |
|---|---|
| Main Authors: | Bergweiler, Walter, Eremenko, Alexandre, Langley, James |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2023
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/996 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, GeometrySimilar Items
-
On Eigenvalue Multiplicities of Self-Adjoint Regular Sturm–Liouville Operators
by: Gesztesy, Fritz, et al.
Published: (2024) -
On Perturbative Hardy-Type Inequalities
by: Gesztesy, Fritz, et al.
Published: (2023) -
Iossif Ostrovskii’s Work on Entire Functions
by: Eremenko, Alexandre, et al.
Published: (2024) -
Рівняння для частинок зі спіном S = 0 і S = 1 у спінорному представленні
by: Grinyuk, B.E.
Published: (2024) -
A Reilly Type Integral Formula Associated with Diffusion-Type Operators and Its Applications
by: Zeng, Fanqi, et al.
Published: (2024)