Revisiting (logarithmic) scaling relations using renormalization group

We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models at the upper critical behavior (for short and long range φ n -theories) an...

Full description

Saved in:
Bibliographic Details
Date:2017
Main Author: Ruiz-Lorenzo, J.J.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2017
Series:Condensed Matter Physics
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Revisiting (logarithmic) scaling relations using renormalization group / J.J. Ruiz-Lorenzo // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13601: 1–10. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id oai:nasplib.isofts.kiev.ua:123456789-156547
record_format dspace
spelling oai:nasplib.isofts.kiev.ua:123456789-1565472025-02-23T17:16:58Z Revisiting (logarithmic) scaling relations using renormalization group Перегляд (логарифмiчних) спiввiдношень скейлiнгу з використанням ренормгрупи Ruiz-Lorenzo, J.J. We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models at the upper critical behavior (for short and long range φ n -theories) and below it. This allows us to check the scaling relations among these critical exponents obtained by analysing the complex singularities (Lee-Yang and Fisher zeroes) of these models. Moreover, we have obtained an explicit method to compute the ϙˆ exponent [defined by ξ ∼ L(logL) ϙˆ ] and, finally, we have found a new derivation of the scaling law associated with it. Ми явно обчислюємо критичнi показники, пов’язанi з логарифмiчними поправками, виходячи з рiвнянь ренормгрупи i середньопольової поведiнки для широкого класу моделей як при вищiй критичнiй вимiрностi (для коротко- i далекосяжних φ n -теорiй), так i нижче вiд неї. Це дозволяє нам перевiрити спiввiдношення скейлiнгу, що пов’язують критичнi показники, аналiзуючи комплекснi сингулярностi (нулi Лi-Янга i Фiшера) цих моделей. Окрiм того, ми запропонували явний метод для обчислення показника ϙˆ [означеного як ξ ∼ L(logL) ϙˆ ] i, накiнець, ми отримали нове виведення закона скейлiнгу, пов’язаного з цим показником. I dedicate this paper to Y. Holovatch to celebrate his 60th birthday. I acknowledge interesting discussions with R. Kenna, B. Berche and M. Dudka. This work was partially supported by Ministerio de Economía y Competitividad (Spain) through Grants No. FIS2013-42840-P and FIS2016-76359-P (partially funded by FEDER) and by Junta de Extremadura (Spain) through Grant No. GRU10158 (partially funded by FEDER). 2017 Article Revisiting (logarithmic) scaling relations using renormalization group / J.J. Ruiz-Lorenzo // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13601: 1–10. — Бібліогр.: 25 назв. — англ. 1607-324X PACS: 64.60-j,05.50+q,05.70.Jk,75.10.Hk DOI:10.5488/CMP.20.13601 arXiv:1702.05072 https://nasplib.isofts.kiev.ua/handle/123456789/156547 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models at the upper critical behavior (for short and long range φ n -theories) and below it. This allows us to check the scaling relations among these critical exponents obtained by analysing the complex singularities (Lee-Yang and Fisher zeroes) of these models. Moreover, we have obtained an explicit method to compute the ϙˆ exponent [defined by ξ ∼ L(logL) ϙˆ ] and, finally, we have found a new derivation of the scaling law associated with it.
format Article
author Ruiz-Lorenzo, J.J.
spellingShingle Ruiz-Lorenzo, J.J.
Revisiting (logarithmic) scaling relations using renormalization group
Condensed Matter Physics
author_facet Ruiz-Lorenzo, J.J.
author_sort Ruiz-Lorenzo, J.J.
title Revisiting (logarithmic) scaling relations using renormalization group
title_short Revisiting (logarithmic) scaling relations using renormalization group
title_full Revisiting (logarithmic) scaling relations using renormalization group
title_fullStr Revisiting (logarithmic) scaling relations using renormalization group
title_full_unstemmed Revisiting (logarithmic) scaling relations using renormalization group
title_sort revisiting (logarithmic) scaling relations using renormalization group
publisher Інститут фізики конденсованих систем НАН України
publishDate 2017
citation_txt Revisiting (logarithmic) scaling relations using renormalization group / J.J. Ruiz-Lorenzo // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13601: 1–10. — Бібліогр.: 25 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT ruizlorenzojj revisitinglogarithmicscalingrelationsusingrenormalizationgroup
AT ruizlorenzojj pereglâdlogarifmičnihspivvidnošenʹskejlinguzvikoristannâmrenormgrupi
first_indexed 2025-07-22T04:13:38Z
last_indexed 2025-07-22T04:13:38Z
_version_ 1838319003590721536