A New Characterization of PSL(2, q) for Some q

Let G be a finite group and let π e (G) be the set of orders of elements from G. Let k ∈ π e (G) and let m k be the number of elements of order k in G. We set nse (G) := {m k | k ∈ π e (G)}. It is proved that PSL(2, q) are uniquely determined by nse (PSL(2, q)), where q ∈ {5, 7, 8, 9, 11, 13}. As th...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Asboei, A.K., Amiri, S.S.S., Iranmanesh, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Series:Український математичний журнал
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A New Characterization of PSL(2, q) for Some q / A.K. Asboei, S.S.S. Amiri, A. Iranmanesh // Український математичний журнал. — 2015. — Т. 67, № 9. — С. 1155–1162. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id oai:nasplib.isofts.kiev.ua:123456789-165855
record_format dspace
spelling oai:nasplib.isofts.kiev.ua:123456789-1658552025-02-23T17:39:02Z A New Characterization of PSL(2, q) for Some q Нова характеристика PSL(2,q) для деякого q Asboei, A.K. Amiri, S.S.S. Iranmanesh, A. Статті Let G be a finite group and let π e (G) be the set of orders of elements from G. Let k ∈ π e (G) and let m k be the number of elements of order k in G. We set nse (G) := {m k | k ∈ π e (G)}. It is proved that PSL(2, q) are uniquely determined by nse (PSL(2, q)), where q ∈ {5, 7, 8, 9, 11, 13}. As the main result of the paper, we prove that if G is a group such that nse (G) = nse (PSL(2, q)), where q ∈ {16, 17, 19, 23}, then G ≅ PSL(2, q). Нехай G — скінченна група, а πe(G) — множина порядків елемента з G. Нехай також k∈πe(G), а mk — число елементів порядку k в G. Покладемо nse (G):={mk|k∈πe(G)}. Доведено, що PSL(2,q) однозначно визначаються nse (PSL(2,q)), де q∈{5,7,8,9,11,13}. Основним результатом роботи є доведення того факту, що якщо G є групою, для якої nse (G)=nse(PSL(2,q)), де q∈16,17,19,23, то G≅PSL(2,q). Partial support by the Center of Excellence of Algebraic Hyper structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledge by the third author 2015 Article A New Characterization of PSL(2, q) for Some q / A.K. Asboei, S.S.S. Amiri, A. Iranmanesh // Український математичний журнал. — 2015. — Т. 67, № 9. — С. 1155–1162. — Бібліогр.: 14 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/165855 512.5 en Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Asboei, A.K.
Amiri, S.S.S.
Iranmanesh, A.
A New Characterization of PSL(2, q) for Some q
Український математичний журнал
description Let G be a finite group and let π e (G) be the set of orders of elements from G. Let k ∈ π e (G) and let m k be the number of elements of order k in G. We set nse (G) := {m k | k ∈ π e (G)}. It is proved that PSL(2, q) are uniquely determined by nse (PSL(2, q)), where q ∈ {5, 7, 8, 9, 11, 13}. As the main result of the paper, we prove that if G is a group such that nse (G) = nse (PSL(2, q)), where q ∈ {16, 17, 19, 23}, then G ≅ PSL(2, q).
format Article
author Asboei, A.K.
Amiri, S.S.S.
Iranmanesh, A.
author_facet Asboei, A.K.
Amiri, S.S.S.
Iranmanesh, A.
author_sort Asboei, A.K.
title A New Characterization of PSL(2, q) for Some q
title_short A New Characterization of PSL(2, q) for Some q
title_full A New Characterization of PSL(2, q) for Some q
title_fullStr A New Characterization of PSL(2, q) for Some q
title_full_unstemmed A New Characterization of PSL(2, q) for Some q
title_sort new characterization of psl(2, q) for some q
publisher Інститут математики НАН України
publishDate 2015
topic_facet Статті
citation_txt A New Characterization of PSL(2, q) for Some q / A.K. Asboei, S.S.S. Amiri, A. Iranmanesh // Український математичний журнал. — 2015. — Т. 67, № 9. — С. 1155–1162. — Бібліогр.: 14 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT asboeiak anewcharacterizationofpsl2qforsomeq
AT amirisss anewcharacterizationofpsl2qforsomeq
AT iranmanesha anewcharacterizationofpsl2qforsomeq
AT asboeiak novaharakteristikapsl2qdlâdeâkogoq
AT amirisss novaharakteristikapsl2qdlâdeâkogoq
AT iranmanesha novaharakteristikapsl2qdlâdeâkogoq
AT asboeiak newcharacterizationofpsl2qforsomeq
AT amirisss newcharacterizationofpsl2qforsomeq
AT iranmanesha newcharacterizationofpsl2qforsomeq
first_indexed 2025-07-22T04:24:41Z
last_indexed 2025-07-22T04:24:41Z
_version_ 1838319698647711744