Технології використання нейрогарнітур для протезування кінцівок

The article discusses modern approaches to the use of neuro-headsets and neuro-computer interfaces in limb prosthetic systems. The relevance of the study is due to the rapid growth of the number of people with amputees in the world and, in particular, in Ukraine, which requires effective technologie...

Full description

Saved in:
Bibliographic Details
Date:2026
Main Authors: Романюк, С.О., Павлов, С.В., Романюк, О.Н., Тітова, Н.В., Котлик, С.В.
Format: Article
Language:Ukrainian
Published: Vinnytsia National Technical University 2026
Subjects:
Online Access:https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/808
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Optoelectronic Information-Power Technologies

Institution

Optoelectronic Information-Power Technologies
Description
Summary:The article discusses modern approaches to the use of neuro-headsets and neuro-computer interfaces in limb prosthetic systems. The relevance of the study is due to the rapid growth of the number of people with amputees in the world and, in particular, in Ukraine, which requires effective technologies for restoring motor functions and improving the quality of life. It is shown that traditional myoelectric prostheses have limitations associated with signal instability and complexity of control, especially in cases of high or bilateral amputations. Particular attention is paid to neuro-headsets based on electroencephalography, which provide non-invasive reading of brain activity and allow determining the intention of movement directly at the level of the motor cortex. The role of sensorimotor rhythms in the μ- and β-wave ranges is analyzed, as well as the ERD/ERS mechanisms underlying the control of bionic prostheses. The possibilities of using motor imagination, P300 potentials and SSVEP for the formation of control commands are separately considered. The paper summarizes current global practices in the use of neuro-headsets in combination with other neuroprosthetic technologies, including Targeted Muscle Reinnervation, Regenerative Peripheral Nerve Interface, implanted myoelectric sensors, and hybrid neuro-measurement methods. It is shown that the integration of EEG with EMG, fNIRS, or invasive neuro-interfaces significantly increases the accuracy, stability, and naturalness of prosthetic control. It is concluded that neuro-headsets are a promising and affordable tool for creating intelligent bionic limbs of a new generation. Their use in hybrid control systems opens up opportunities for individualized prosthetics, reducing the adaptation period, and expanding the functional capabilities of people with amputees.