\(C^*\)-algebra generated by four projections with sum equal to 2
We describe the \(C^*\)-algebra generated by four orthogonal projections \(p_1, p_2, p_3, p_4\), satisfying the linear relation \(p_1+p_2+p_3+p_4=2I\). The simplest realization by \(2\times 2\)-matrix-functions over the sphere \(S^2\) is given.
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1004 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-1004 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-10042018-05-15T06:07:40Z \(C^*\)-algebra generated by four projections with sum equal to 2 Savchuk, Yuri matrix-functions, projections, finitely generated \(C^*\)-algebras 46L05, 47L50 We describe the \(C^*\)-algebra generated by four orthogonal projections \(p_1, p_2, p_3, p_4\), satisfying the linear relation \(p_1+p_2+p_3+p_4=2I\). The simplest realization by \(2\times 2\)-matrix-functions over the sphere \(S^2\) is given. Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1004 Algebra and Discrete Mathematics; Vol 3, No 3 (2004) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1004/533 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-05-15T06:07:40Z |
| collection |
OJS |
| language |
English |
| topic |
matrix-functions projections finitely generated \(C^*\)-algebras 46L05 47L50 |
| spellingShingle |
matrix-functions projections finitely generated \(C^*\)-algebras 46L05 47L50 Savchuk, Yuri \(C^*\)-algebra generated by four projections with sum equal to 2 |
| topic_facet |
matrix-functions projections finitely generated \(C^*\)-algebras 46L05 47L50 |
| format |
Article |
| author |
Savchuk, Yuri |
| author_facet |
Savchuk, Yuri |
| author_sort |
Savchuk, Yuri |
| title |
\(C^*\)-algebra generated by four projections with sum equal to 2 |
| title_short |
\(C^*\)-algebra generated by four projections with sum equal to 2 |
| title_full |
\(C^*\)-algebra generated by four projections with sum equal to 2 |
| title_fullStr |
\(C^*\)-algebra generated by four projections with sum equal to 2 |
| title_full_unstemmed |
\(C^*\)-algebra generated by four projections with sum equal to 2 |
| title_sort |
\(c^*\)-algebra generated by four projections with sum equal to 2 |
| description |
We describe the \(C^*\)-algebra generated by four orthogonal projections \(p_1, p_2, p_3, p_4\), satisfying the linear relation \(p_1+p_2+p_3+p_4=2I\). The simplest realization by \(2\times 2\)-matrix-functions over the sphere \(S^2\) is given. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1004 |
| work_keys_str_mv |
AT savchukyuri calgebrageneratedbyfourprojectionswithsumequalto2 |
| first_indexed |
2025-07-17T10:35:58Z |
| last_indexed |
2025-07-17T10:35:58Z |
| _version_ |
1837890128722264064 |