\(C^*\)-algebra generated by four projections with sum equal to 2

We describe the \(C^*\)-algebra generated by four orthogonal projections \(p_1, p_2, p_3, p_4\), satisfying the linear relation \(p_1+p_2+p_3+p_4=2I\). The simplest realization by \(2\times 2\)-matrix-functions over the sphere \(S^2\) is given.

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Savchuk, Yuri
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1004
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1004
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10042018-05-15T06:07:40Z \(C^*\)-algebra generated by four projections with sum equal to 2 Savchuk, Yuri matrix-functions, projections, finitely generated \(C^*\)-algebras 46L05, 47L50 We describe the \(C^*\)-algebra generated by four orthogonal projections \(p_1, p_2, p_3, p_4\), satisfying the linear relation \(p_1+p_2+p_3+p_4=2I\). The simplest realization by \(2\times 2\)-matrix-functions over the sphere \(S^2\) is given. Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1004 Algebra and Discrete Mathematics; Vol 3, No 3 (2004) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1004/533 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-15T06:07:40Z
collection OJS
language English
topic matrix-functions
projections
finitely generated \(C^*\)-algebras
46L05
47L50
spellingShingle matrix-functions
projections
finitely generated \(C^*\)-algebras
46L05
47L50
Savchuk, Yuri
\(C^*\)-algebra generated by four projections with sum equal to 2
topic_facet matrix-functions
projections
finitely generated \(C^*\)-algebras
46L05
47L50
format Article
author Savchuk, Yuri
author_facet Savchuk, Yuri
author_sort Savchuk, Yuri
title \(C^*\)-algebra generated by four projections with sum equal to 2
title_short \(C^*\)-algebra generated by four projections with sum equal to 2
title_full \(C^*\)-algebra generated by four projections with sum equal to 2
title_fullStr \(C^*\)-algebra generated by four projections with sum equal to 2
title_full_unstemmed \(C^*\)-algebra generated by four projections with sum equal to 2
title_sort \(c^*\)-algebra generated by four projections with sum equal to 2
description We describe the \(C^*\)-algebra generated by four orthogonal projections \(p_1, p_2, p_3, p_4\), satisfying the linear relation \(p_1+p_2+p_3+p_4=2I\). The simplest realization by \(2\times 2\)-matrix-functions over the sphere \(S^2\) is given.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1004
work_keys_str_mv AT savchukyuri calgebrageneratedbyfourprojectionswithsumequalto2
first_indexed 2025-07-17T10:35:58Z
last_indexed 2025-07-17T10:35:58Z
_version_ 1837890128722264064