On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
The group \(U\!J_2(\mathbb{F}_q)\) of unitriangular automorphisms of the polynomial ring in two variables over a finite field \(\mathbb{F}_q\), \(q=p^m\), is studied. We proved that \(U\!J_2(\mathbb{F}_q)\) is isomorphic to a standard wreath product of elementary Abelian \(p\)-groups. Using wreath p...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1038 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | The group \(U\!J_2(\mathbb{F}_q)\) of unitriangular automorphisms of the polynomial ring in two variables over a finite field \(\mathbb{F}_q\), \(q=p^m\), is studied. We proved that \(U\!J_2(\mathbb{F}_q)\) is isomorphic to a standard wreath product of elementary Abelian \(p\)-groups. Using wreath product representation we proved that the nilpotency class of \(U\!J_2(\mathbb{F}_q)\) is \(c=m(p-1)+1\) and the \((k+1)\)th term of the lower central series of this group coincides with the \((c-k)\)th term of its upper central series. Also we showed that \(U\!J_n(\mathbb{F}_q)\) is not nilpotent if \(n \geq 3\). |
|---|