On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field

The group \(U\!J_2(\mathbb{F}_q)\) of unitriangular automorphisms of the polynomial ring in two variables over a finite field \(\mathbb{F}_q\), \(q=p^m\), is studied. We proved that \(U\!J_2(\mathbb{F}_q)\) is isomorphic to a standard wreath product of elementary Abelian \(p\)-groups. Using wreath p...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Leshchenko, Yuriy Yu., Sushchansky, Vitaly I.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1038
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1038
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10382018-04-26T02:11:00Z On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field Leshchenko, Yuriy Yu. Sushchansky, Vitaly I. polynomial ring, unitriangular automorphism, finite field, wreath product, nilpotent group, central series 20D15, 20E22, 20E36, 20F14 The group \(U\!J_2(\mathbb{F}_q)\) of unitriangular automorphisms of the polynomial ring in two variables over a finite field \(\mathbb{F}_q\), \(q=p^m\), is studied. We proved that \(U\!J_2(\mathbb{F}_q)\) is isomorphic to a standard wreath product of elementary Abelian \(p\)-groups. Using wreath product representation we proved that the nilpotency class of \(U\!J_2(\mathbb{F}_q)\) is \(c=m(p-1)+1\) and the \((k+1)\)th term of the lower central series of this group coincides with the \((c-k)\)th term of its upper central series. Also we showed that \(U\!J_n(\mathbb{F}_q)\) is not nilpotent if \(n \geq 3\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1038 Algebra and Discrete Mathematics; Vol 17, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1038/560 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:11:00Z
collection OJS
language English
topic polynomial ring
unitriangular automorphism
finite field
wreath product
nilpotent group
central series
20D15
20E22
20E36
20F14
spellingShingle polynomial ring
unitriangular automorphism
finite field
wreath product
nilpotent group
central series
20D15
20E22
20E36
20F14
Leshchenko, Yuriy Yu.
Sushchansky, Vitaly I.
On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
topic_facet polynomial ring
unitriangular automorphism
finite field
wreath product
nilpotent group
central series
20D15
20E22
20E36
20F14
format Article
author Leshchenko, Yuriy Yu.
Sushchansky, Vitaly I.
author_facet Leshchenko, Yuriy Yu.
Sushchansky, Vitaly I.
author_sort Leshchenko, Yuriy Yu.
title On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
title_short On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
title_full On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
title_fullStr On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
title_full_unstemmed On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
title_sort on the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
description The group \(U\!J_2(\mathbb{F}_q)\) of unitriangular automorphisms of the polynomial ring in two variables over a finite field \(\mathbb{F}_q\), \(q=p^m\), is studied. We proved that \(U\!J_2(\mathbb{F}_q)\) is isomorphic to a standard wreath product of elementary Abelian \(p\)-groups. Using wreath product representation we proved that the nilpotency class of \(U\!J_2(\mathbb{F}_q)\) is \(c=m(p-1)+1\) and the \((k+1)\)th term of the lower central series of this group coincides with the \((c-k)\)th term of its upper central series. Also we showed that \(U\!J_n(\mathbb{F}_q)\) is not nilpotent if \(n \geq 3\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1038
work_keys_str_mv AT leshchenkoyuriyyu onthegroupofunitriangularautomorphismsofthepolynomialringintwovariablesoverafinitefield
AT sushchanskyvitalyi onthegroupofunitriangularautomorphismsofthepolynomialringintwovariablesoverafinitefield
first_indexed 2025-07-17T10:34:09Z
last_indexed 2025-07-17T10:34:09Z
_version_ 1837889958181863424