On weakly semisimple derivations of the polynomial ring in two variables

Let \(\mathbb K\) be an algebraically closed field of characteristic zero and \(\mathbb K[x,y]\) the polynomial ring. Every element \(f\in \mathbb K[x,y]\) determines the Jacobian derivation \(D_f\) of \(\mathbb K[x,y]\) by the rule D_f(h) = det J(f,h), where J(f,h) is the Jacobian matrix of the pol...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Gavran, Volodimir, Stepukh, Vitaliy
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1046
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1046
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10462018-04-26T02:28:53Z On weakly semisimple derivations of the polynomial ring in two variables Gavran, Volodimir Stepukh, Vitaliy polynomial ring, irreducible polynomial, Jacobian derivation 13N15; 13N99 Let \(\mathbb K\) be an algebraically closed field of characteristic zero and \(\mathbb K[x,y]\) the polynomial ring. Every element \(f\in \mathbb K[x,y]\) determines the Jacobian derivation \(D_f\) of \(\mathbb K[x,y]\) by the rule D_f(h) = det J(f,h), where J(f,h) is the Jacobian matrix of the polynomials \(f\) and \(h\). A polynomial \(f\) is called weakly semisimple if there exists a polynomial \(g\) such that \(D_f(g) = \lambda g\) for some nonzero \(\lambda\in \mathbb K\). Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of \(\mathbb K[x,y]\) with zero divergence). We give such a description for polynomials \(f\) with the separated variables, i.e. which are of the form: \(f(x,y) = f_1(x) f_2(y)\) for some \(f_{1}(t), f_{2}(t)\in \mathbb K[t]\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1046 Algebra and Discrete Mathematics; Vol 18, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1046/568 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic polynomial ring
irreducible polynomial
Jacobian derivation
13N15; 13N99
spellingShingle polynomial ring
irreducible polynomial
Jacobian derivation
13N15; 13N99
Gavran, Volodimir
Stepukh, Vitaliy
On weakly semisimple derivations of the polynomial ring in two variables
topic_facet polynomial ring
irreducible polynomial
Jacobian derivation
13N15; 13N99
format Article
author Gavran, Volodimir
Stepukh, Vitaliy
author_facet Gavran, Volodimir
Stepukh, Vitaliy
author_sort Gavran, Volodimir
title On weakly semisimple derivations of the polynomial ring in two variables
title_short On weakly semisimple derivations of the polynomial ring in two variables
title_full On weakly semisimple derivations of the polynomial ring in two variables
title_fullStr On weakly semisimple derivations of the polynomial ring in two variables
title_full_unstemmed On weakly semisimple derivations of the polynomial ring in two variables
title_sort on weakly semisimple derivations of the polynomial ring in two variables
description Let \(\mathbb K\) be an algebraically closed field of characteristic zero and \(\mathbb K[x,y]\) the polynomial ring. Every element \(f\in \mathbb K[x,y]\) determines the Jacobian derivation \(D_f\) of \(\mathbb K[x,y]\) by the rule D_f(h) = det J(f,h), where J(f,h) is the Jacobian matrix of the polynomials \(f\) and \(h\). A polynomial \(f\) is called weakly semisimple if there exists a polynomial \(g\) such that \(D_f(g) = \lambda g\) for some nonzero \(\lambda\in \mathbb K\). Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of \(\mathbb K[x,y]\) with zero divergence). We give such a description for polynomials \(f\) with the separated variables, i.e. which are of the form: \(f(x,y) = f_1(x) f_2(y)\) for some \(f_{1}(t), f_{2}(t)\in \mathbb K[t]\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1046
work_keys_str_mv AT gavranvolodimir onweaklysemisimplederivationsofthepolynomialringintwovariables
AT stepukhvitaliy onweaklysemisimplederivationsofthepolynomialringintwovariables
first_indexed 2024-04-12T06:27:18Z
last_indexed 2024-04-12T06:27:18Z
_version_ 1796109243778072576