On finite groups with Hall normally embedded Schmidt subgroups

A subgroup \(H\) of a finite group \(G\) is said to be Hall normally embedded in \(G\) if there is a normal subgroup \(N\) of \(G\) such that \(H\) is a Hall subgroup of \(N\). A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Kniahina, Viktoryia Nikolaevna, Monakhov, Victor Stepanovich
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1126
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1126
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11262018-10-20T08:02:25Z On finite groups with Hall normally embedded Schmidt subgroups Kniahina, Viktoryia Nikolaevna Monakhov, Victor Stepanovich finite group, Hall subgroup, normal subgroup, derived subgroup, nilpotent subgroup 20E28, 20E32, 20E34 A subgroup \(H\) of a finite group \(G\) is said to be Hall normally embedded in \(G\) if there is a normal subgroup \(N\) of \(G\) such that \(H\) is a Hall subgroup of \(N\). A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group \(G\) is Hall normally embedded in \(G\), then the derived subgroup of \(G\) is nilpotent. Lugansk National Taras Shevchenko University 2018-10-20 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1126 Algebra and Discrete Mathematics; Vol 26, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1126/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1126/353 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-10-20T08:02:25Z
collection OJS
language English
topic finite group
Hall subgroup
normal subgroup
derived subgroup
nilpotent subgroup
20E28
20E32
20E34
spellingShingle finite group
Hall subgroup
normal subgroup
derived subgroup
nilpotent subgroup
20E28
20E32
20E34
Kniahina, Viktoryia Nikolaevna
Monakhov, Victor Stepanovich
On finite groups with Hall normally embedded Schmidt subgroups
topic_facet finite group
Hall subgroup
normal subgroup
derived subgroup
nilpotent subgroup
20E28
20E32
20E34
format Article
author Kniahina, Viktoryia Nikolaevna
Monakhov, Victor Stepanovich
author_facet Kniahina, Viktoryia Nikolaevna
Monakhov, Victor Stepanovich
author_sort Kniahina, Viktoryia Nikolaevna
title On finite groups with Hall normally embedded Schmidt subgroups
title_short On finite groups with Hall normally embedded Schmidt subgroups
title_full On finite groups with Hall normally embedded Schmidt subgroups
title_fullStr On finite groups with Hall normally embedded Schmidt subgroups
title_full_unstemmed On finite groups with Hall normally embedded Schmidt subgroups
title_sort on finite groups with hall normally embedded schmidt subgroups
description A subgroup \(H\) of a finite group \(G\) is said to be Hall normally embedded in \(G\) if there is a normal subgroup \(N\) of \(G\) such that \(H\) is a Hall subgroup of \(N\). A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group \(G\) is Hall normally embedded in \(G\), then the derived subgroup of \(G\) is nilpotent.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1126
work_keys_str_mv AT kniahinaviktoryianikolaevna onfinitegroupswithhallnormallyembeddedschmidtsubgroups
AT monakhovvictorstepanovich onfinitegroupswithhallnormallyembeddedschmidtsubgroups
first_indexed 2025-07-17T10:33:18Z
last_indexed 2025-07-17T10:33:18Z
_version_ 1837889905072537600