Uniform ball structures

A ball structure is a triple \(\mathbb B=(X,P,B)\), where \(X,P\) are nonempty sets and, for all  \(x\in X\), \(\alpha \in P\), \(B(x,\alpha )\) is a subset of \(X, x\in B(x,\alpha )\), which is called a ball of radius \(\alpha \) around \(x\). We introduce the class of uniform ball structures as an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Protasov, I. V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1145
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:A ball structure is a triple \(\mathbb B=(X,P,B)\), where \(X,P\) are nonempty sets and, for all  \(x\in X\), \(\alpha \in P\), \(B(x,\alpha )\) is a subset of \(X, x\in B(x,\alpha )\), which is called a ball of radius \(\alpha \) around \(x\). We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support \(X\).