Ramseyan variations on symmetric subsequences

A theorem of Dekking in the combinatorics of words implies that there exists an injective order-preserving transformation \(f : {\{0,1,\ldots,n\}}\rightarrow  {\{0,1,\ldots,2n\}}\) with the restriction \(f(i+1)\le f(i) + 2\) such that for every 5-term arithmetic progression \(P\) its image \(f(P)\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Verbitsky, Oleg
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1147
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:A theorem of Dekking in the combinatorics of words implies that there exists an injective order-preserving transformation \(f : {\{0,1,\ldots,n\}}\rightarrow  {\{0,1,\ldots,2n\}}\) with the restriction \(f(i+1)\le f(i) + 2\) such that for every 5-term arithmetic progression \(P\) its image \(f(P)\) is not an arithmetic progression. In this paper we consider symmetric sets in place of arithmetic progressions and prove lower and upper bounds for the maximum \(M=M(n)\) such that every \(f\) as above preserves the symmetry of at least one symmetric set \(S\subseteq\{0,1,\ldots,n\}\) with \(|S|\ge M\).