A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
We first present a filtration on the ring \(L_n\) of Laurent polynomials such that the direct sum decomposition of its associated graded ring \(gr L_n\) agrees with the direct sum decomposition of \(gr L_n\), as a module over the complex general linear Lie algebra \(\mathfrak{gl}(n)\), into its simp...
Gespeichert in:
| Datum: | 2021 |
|---|---|
| Hauptverfasser: | Choi, C., Kim, S., Seo, H. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2021
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1304 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
A note on modular group algebras with upper Lie nilpotency indices
von: Bhatt, S., et al.
Veröffentlicht: (2022) -
A note on modular group algebras with upper Lie nilpotency indices
von: Bhatt, S., et al.
Veröffentlicht: (2022) -
Lie and Jordan structures of differentially semiprime rings
von: Artemovych, Orest D., et al.
Veröffentlicht: (2015) -
Lie and Jordan structures of differentially semiprime rings
von: Artemovych, Orest D., et al.
Veröffentlicht: (2015) -
A note on simplicity of contact Lie algebras over \(\operatorname{GF}(2)\)
von: Zargeh, Chia
Veröffentlicht: (2018)