Maximal subgroup growth of a few polycyclic groups

We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let \(G_k = \langle x_1, x_2, \dots , x_k \mid x_ix_jx_i^{-1}x_j \text{ for all } i < j \rangle\), so \(G_k = \mathbb{Z} \rtimes (\mathbb{Z} \rtimes (\mathbb{Z} \rtimes \dots \rtimes \mathbb{Z}))\). Then for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
Hauptverfasser: Kelley, A., Wolfe, E.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2022
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1506
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1506
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-15062022-03-28T05:34:02Z Maximal subgroup growth of a few polycyclic groups Kelley, A. Wolfe, E. maximal subgroup growth, polycyclic groups, semidirect products 20E07 We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let \(G_k = \langle x_1, x_2, \dots , x_k \mid x_ix_jx_i^{-1}x_j \text{ for all } i < j \rangle\), so \(G_k = \mathbb{Z} \rtimes (\mathbb{Z} \rtimes (\mathbb{Z} \rtimes \dots \rtimes \mathbb{Z}))\). Then for all integers \(k \geq 2\), we calculate \(m_n(G_k)\), the number of maximal subgroups of \(G_k\) of index \(n\), exactly. Also, for infinitely many groups \(H_k\) of the form \(\mathbb{Z}^2 \rtimes G_2\), we calculate \(m_n(H_k)\) exactly. Lugansk National Taras Shevchenko University 2022-03-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1506 10.12958/adm1506 Algebra and Discrete Mathematics; Vol 32, No 2 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1506/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1506/626 Copyright (c) 2022 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2022-03-28T05:34:02Z
collection OJS
language English
topic maximal subgroup growth
polycyclic groups
semidirect products
20E07
spellingShingle maximal subgroup growth
polycyclic groups
semidirect products
20E07
Kelley, A.
Wolfe, E.
Maximal subgroup growth of a few polycyclic groups
topic_facet maximal subgroup growth
polycyclic groups
semidirect products
20E07
format Article
author Kelley, A.
Wolfe, E.
author_facet Kelley, A.
Wolfe, E.
author_sort Kelley, A.
title Maximal subgroup growth of a few polycyclic groups
title_short Maximal subgroup growth of a few polycyclic groups
title_full Maximal subgroup growth of a few polycyclic groups
title_fullStr Maximal subgroup growth of a few polycyclic groups
title_full_unstemmed Maximal subgroup growth of a few polycyclic groups
title_sort maximal subgroup growth of a few polycyclic groups
description We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let \(G_k = \langle x_1, x_2, \dots , x_k \mid x_ix_jx_i^{-1}x_j \text{ for all } i < j \rangle\), so \(G_k = \mathbb{Z} \rtimes (\mathbb{Z} \rtimes (\mathbb{Z} \rtimes \dots \rtimes \mathbb{Z}))\). Then for all integers \(k \geq 2\), we calculate \(m_n(G_k)\), the number of maximal subgroups of \(G_k\) of index \(n\), exactly. Also, for infinitely many groups \(H_k\) of the form \(\mathbb{Z}^2 \rtimes G_2\), we calculate \(m_n(H_k)\) exactly.
publisher Lugansk National Taras Shevchenko University
publishDate 2022
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1506
work_keys_str_mv AT kelleya maximalsubgroupgrowthofafewpolycyclicgroups
AT wolfee maximalsubgroupgrowthofafewpolycyclicgroups
first_indexed 2025-07-17T10:32:23Z
last_indexed 2025-07-17T10:32:23Z
_version_ 1837889847771004928