On Herstein's identity in prime rings
A celebrated result of Herstein [10, Theorem 6] states that a ring \(R\) must be commutative if \([x,y]^{n(x,y)}=[x,y]\) for all \(x,y\in R,\) where \(n(x,y)>1\) is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity \(F([x,y])^{n}=F([x,y])\) and \(\...
Gespeichert in:
| Datum: | 2022 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2022
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |