On Herstein's identity in prime rings

A celebrated result of Herstein [10, Theorem 6] states that a ring \(R\) must be commutative if \([x,y]^{n(x,y)}=[x,y]\) for all \(x,y\in R,\) where \(n(x,y)>1\) is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity \(F([x,y])^{n}=F([x,y])\) and \(\...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автор: Sandhu, G. S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics