Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)

We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\).

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Kesten, J., Mathers, S., Normatov, Z.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2021
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\).