Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)

We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\).

Saved in:
Bibliographic Details
Date:2021
Main Authors: Kesten, J., Mathers, S., Normatov, Z.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2021
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1656
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of \(\mathbb{C}[ x,y]\) acts in an infinitely-transitive way on the Calogero-Moser space \(\mathcal{C}_2\).