The order of dominance of a monomial ideal

Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Alesandroni, G.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1755
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-17552023-06-18T17:42:42Z The order of dominance of a monomial ideal Alesandroni, G. monomial ideal, codimension, projective dimension, Betti number 13D02 Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We use the order of dominance to characterize the class of Scarf ideals that are Cohen-Macaulay, and also to characterize when the Taylor resolution is minimal. In addition, we show that \(\operatorname{odom}(S/M)\) has the following properties:(i) \(\operatorname{codim}(S/M) \leq \operatorname{odom}(S/M)\leq \operatorname{pd}(S/M)\).(ii) \(\operatorname{pd}(S/M)=n\) if and only if \(\operatorname{odom}(S/M)=n\).(iii) \(\operatorname{pd}(S/M)=1\) if and only if \(\operatorname{odom}(S/M)=1\).(iv) If \(\operatorname{odom}(S/M)=n-1\), then \(\operatorname{pd}(S/M)=n-1\).(v) If \(\operatorname{odom}(S/M)=q-1\), then \(\operatorname{pd}(S/M)=q-1\).(vi) If \(n=3\), then \(\operatorname{pd}(S/M)=\operatorname{odom}(S/M)\).  Lugansk National Taras Shevchenko University 2023-06-18 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755 10.12958/adm1755 Algebra and Discrete Mathematics; Vol 35, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1755/818 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic monomial ideal
codimension
projective dimension
Betti number
13D02
spellingShingle monomial ideal
codimension
projective dimension
Betti number
13D02
Alesandroni, G.
The order of dominance of a monomial ideal
topic_facet monomial ideal
codimension
projective dimension
Betti number
13D02
format Article
author Alesandroni, G.
author_facet Alesandroni, G.
author_sort Alesandroni, G.
title The order of dominance of a monomial ideal
title_short The order of dominance of a monomial ideal
title_full The order of dominance of a monomial ideal
title_fullStr The order of dominance of a monomial ideal
title_full_unstemmed The order of dominance of a monomial ideal
title_sort order of dominance of a monomial ideal
description Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We use the order of dominance to characterize the class of Scarf ideals that are Cohen-Macaulay, and also to characterize when the Taylor resolution is minimal. In addition, we show that \(\operatorname{odom}(S/M)\) has the following properties:(i) \(\operatorname{codim}(S/M) \leq \operatorname{odom}(S/M)\leq \operatorname{pd}(S/M)\).(ii) \(\operatorname{pd}(S/M)=n\) if and only if \(\operatorname{odom}(S/M)=n\).(iii) \(\operatorname{pd}(S/M)=1\) if and only if \(\operatorname{odom}(S/M)=1\).(iv) If \(\operatorname{odom}(S/M)=n-1\), then \(\operatorname{pd}(S/M)=n-1\).(v) If \(\operatorname{odom}(S/M)=q-1\), then \(\operatorname{pd}(S/M)=q-1\).(vi) If \(n=3\), then \(\operatorname{pd}(S/M)=\operatorname{odom}(S/M)\). 
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755
work_keys_str_mv AT alesandronig theorderofdominanceofamonomialideal
AT alesandronig orderofdominanceofamonomialideal
first_indexed 2024-04-12T06:25:13Z
last_indexed 2024-04-12T06:25:13Z
_version_ 1796109231806480384