The order of dominance of a monomial ideal
Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We...
Збережено в:
Дата: | 2023 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2023
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1755 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-17552023-06-18T17:42:42Z The order of dominance of a monomial ideal Alesandroni, G. monomial ideal, codimension, projective dimension, Betti number 13D02 Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We use the order of dominance to characterize the class of Scarf ideals that are Cohen-Macaulay, and also to characterize when the Taylor resolution is minimal. In addition, we show that \(\operatorname{odom}(S/M)\) has the following properties:(i) \(\operatorname{codim}(S/M) \leq \operatorname{odom}(S/M)\leq \operatorname{pd}(S/M)\).(ii) \(\operatorname{pd}(S/M)=n\) if and only if \(\operatorname{odom}(S/M)=n\).(iii) \(\operatorname{pd}(S/M)=1\) if and only if \(\operatorname{odom}(S/M)=1\).(iv) If \(\operatorname{odom}(S/M)=n-1\), then \(\operatorname{pd}(S/M)=n-1\).(v) If \(\operatorname{odom}(S/M)=q-1\), then \(\operatorname{pd}(S/M)=q-1\).(vi) If \(n=3\), then \(\operatorname{pd}(S/M)=\operatorname{odom}(S/M)\). Lugansk National Taras Shevchenko University 2023-06-18 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755 10.12958/adm1755 Algebra and Discrete Mathematics; Vol 35, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1755/818 Copyright (c) 2023 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
monomial ideal codimension projective dimension Betti number 13D02 |
spellingShingle |
monomial ideal codimension projective dimension Betti number 13D02 Alesandroni, G. The order of dominance of a monomial ideal |
topic_facet |
monomial ideal codimension projective dimension Betti number 13D02 |
format |
Article |
author |
Alesandroni, G. |
author_facet |
Alesandroni, G. |
author_sort |
Alesandroni, G. |
title |
The order of dominance of a monomial ideal |
title_short |
The order of dominance of a monomial ideal |
title_full |
The order of dominance of a monomial ideal |
title_fullStr |
The order of dominance of a monomial ideal |
title_full_unstemmed |
The order of dominance of a monomial ideal |
title_sort |
order of dominance of a monomial ideal |
description |
Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We use the order of dominance to characterize the class of Scarf ideals that are Cohen-Macaulay, and also to characterize when the Taylor resolution is minimal. In addition, we show that \(\operatorname{odom}(S/M)\) has the following properties:(i) \(\operatorname{codim}(S/M) \leq \operatorname{odom}(S/M)\leq \operatorname{pd}(S/M)\).(ii) \(\operatorname{pd}(S/M)=n\) if and only if \(\operatorname{odom}(S/M)=n\).(iii) \(\operatorname{pd}(S/M)=1\) if and only if \(\operatorname{odom}(S/M)=1\).(iv) If \(\operatorname{odom}(S/M)=n-1\), then \(\operatorname{pd}(S/M)=n-1\).(v) If \(\operatorname{odom}(S/M)=q-1\), then \(\operatorname{pd}(S/M)=q-1\).(vi) If \(n=3\), then \(\operatorname{pd}(S/M)=\operatorname{odom}(S/M)\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2023 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755 |
work_keys_str_mv |
AT alesandronig theorderofdominanceofamonomialideal AT alesandronig orderofdominanceofamonomialideal |
first_indexed |
2024-04-12T06:25:13Z |
last_indexed |
2024-04-12T06:25:13Z |
_version_ |
1796109231806480384 |