The order of dominance of a monomial ideal

Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Alesandroni, G.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1755
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-17552023-06-18T17:42:42Z The order of dominance of a monomial ideal Alesandroni, G. monomial ideal, codimension, projective dimension, Betti number 13D02 Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We use the order of dominance to characterize the class of Scarf ideals that are Cohen-Macaulay, and also to characterize when the Taylor resolution is minimal. In addition, we show that \(\operatorname{odom}(S/M)\) has the following properties:(i) \(\operatorname{codim}(S/M) \leq \operatorname{odom}(S/M)\leq \operatorname{pd}(S/M)\).(ii) \(\operatorname{pd}(S/M)=n\) if and only if \(\operatorname{odom}(S/M)=n\).(iii) \(\operatorname{pd}(S/M)=1\) if and only if \(\operatorname{odom}(S/M)=1\).(iv) If \(\operatorname{odom}(S/M)=n-1\), then \(\operatorname{pd}(S/M)=n-1\).(v) If \(\operatorname{odom}(S/M)=q-1\), then \(\operatorname{pd}(S/M)=q-1\).(vi) If \(n=3\), then \(\operatorname{pd}(S/M)=\operatorname{odom}(S/M)\).  Lugansk National Taras Shevchenko University 2023-06-18 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755 10.12958/adm1755 Algebra and Discrete Mathematics; Vol 35, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1755/818 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-06-18T17:42:42Z
collection OJS
language English
topic monomial ideal
codimension
projective dimension
Betti number
13D02
spellingShingle monomial ideal
codimension
projective dimension
Betti number
13D02
Alesandroni, G.
The order of dominance of a monomial ideal
topic_facet monomial ideal
codimension
projective dimension
Betti number
13D02
format Article
author Alesandroni, G.
author_facet Alesandroni, G.
author_sort Alesandroni, G.
title The order of dominance of a monomial ideal
title_short The order of dominance of a monomial ideal
title_full The order of dominance of a monomial ideal
title_fullStr The order of dominance of a monomial ideal
title_full_unstemmed The order of dominance of a monomial ideal
title_sort order of dominance of a monomial ideal
description Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We use the order of dominance to characterize the class of Scarf ideals that are Cohen-Macaulay, and also to characterize when the Taylor resolution is minimal. In addition, we show that \(\operatorname{odom}(S/M)\) has the following properties:(i) \(\operatorname{codim}(S/M) \leq \operatorname{odom}(S/M)\leq \operatorname{pd}(S/M)\).(ii) \(\operatorname{pd}(S/M)=n\) if and only if \(\operatorname{odom}(S/M)=n\).(iii) \(\operatorname{pd}(S/M)=1\) if and only if \(\operatorname{odom}(S/M)=1\).(iv) If \(\operatorname{odom}(S/M)=n-1\), then \(\operatorname{pd}(S/M)=n-1\).(v) If \(\operatorname{odom}(S/M)=q-1\), then \(\operatorname{pd}(S/M)=q-1\).(vi) If \(n=3\), then \(\operatorname{pd}(S/M)=\operatorname{odom}(S/M)\). 
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755
work_keys_str_mv AT alesandronig theorderofdominanceofamonomialideal
AT alesandronig orderofdominanceofamonomialideal
first_indexed 2025-07-17T10:36:14Z
last_indexed 2025-07-17T10:36:14Z
_version_ 1837890089966895104