Homotopy equivalence of normalized and unnormalized complexes, revisited

We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold-Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the un...

Full description

Saved in:
Bibliographic Details
Date:2022
Main Authors: Lyubashenko, V., Matsui, A.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2022
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1879
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold-Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.