On a finite state representation of \(GL(n,\mathbb{Z})\)
It is examined finite state automorphisms of regular rooted trees constructed in [6] to represent groups \(GL(n,\mathbb{Z})\). The number of states of automorphisms that correspond to elementary matrices is computed. Using the representation of \(GL(2,\mathbb{Z})\) over an alphabet of size \(4\) a...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2023
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2158 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |