Centralizers of Jacobian derivations
Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobi...
Збережено в:
Дата: | 2023 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2023
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |