Centralizers of Jacobian derivations

Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Efimov, D. I., Petravchuk, A. P., Sydorov, M. S.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2023
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2186
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-21862023-12-11T16:21:07Z Centralizers of Jacobian derivations Efimov, D. I. Petravchuk, A. P. Sydorov, M. S. Lie algebra, Jacobian derivation, differential equation, centralizer, integrable system Primary 17B66; Secondary 17B80 Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobian derivation if there exists \(f \in \mathbb K[x, y]\) such that \(D(h) = \det J(f, h)\) for any \(h \in \mathbb K[x, y]\) (here \(J(f, h)\) is the Jacobian matrix for \(f\) and \(h\)). Such a derivation is denoted by \(D_f\) . The kernel of \(D_f\) in \(\mathbb K[x, y]\) is a subalgebra \(\mathbb K[p]\) where \(p=p(x, y)\) is a polynomial of smallest degree such that \(f(x, y) = \varphi (p(x, y))\) for some \(\varphi (t) \in \mathbb K[t]\). Let \(C = C_{W_2(\mathbb K)} (D_f)\) be the centralizer of \(D_f\) in \(W_2(\mathbb K)\). We prove that \(C\) is the free \(\mathbb K[p]\)-module of rank \(1\) or \(2\) over \(\mathbb K[p]\) and point out a criterion of being a module of rank \(2\). These results are used to obtain a class of integrable autonomous systems of differential equations. Lugansk National Taras Shevchenko University 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186 10.12958/adm2186 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2186/1138 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Lie algebra
Jacobian derivation
differential equation
centralizer
integrable system
Primary 17B66; Secondary 17B80
spellingShingle Lie algebra
Jacobian derivation
differential equation
centralizer
integrable system
Primary 17B66; Secondary 17B80
Efimov, D. I.
Petravchuk, A. P.
Sydorov, M. S.
Centralizers of Jacobian derivations
topic_facet Lie algebra
Jacobian derivation
differential equation
centralizer
integrable system
Primary 17B66; Secondary 17B80
format Article
author Efimov, D. I.
Petravchuk, A. P.
Sydorov, M. S.
author_facet Efimov, D. I.
Petravchuk, A. P.
Sydorov, M. S.
author_sort Efimov, D. I.
title Centralizers of Jacobian derivations
title_short Centralizers of Jacobian derivations
title_full Centralizers of Jacobian derivations
title_fullStr Centralizers of Jacobian derivations
title_full_unstemmed Centralizers of Jacobian derivations
title_sort centralizers of jacobian derivations
description Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobian derivation if there exists \(f \in \mathbb K[x, y]\) such that \(D(h) = \det J(f, h)\) for any \(h \in \mathbb K[x, y]\) (here \(J(f, h)\) is the Jacobian matrix for \(f\) and \(h\)). Such a derivation is denoted by \(D_f\) . The kernel of \(D_f\) in \(\mathbb K[x, y]\) is a subalgebra \(\mathbb K[p]\) where \(p=p(x, y)\) is a polynomial of smallest degree such that \(f(x, y) = \varphi (p(x, y))\) for some \(\varphi (t) \in \mathbb K[t]\). Let \(C = C_{W_2(\mathbb K)} (D_f)\) be the centralizer of \(D_f\) in \(W_2(\mathbb K)\). We prove that \(C\) is the free \(\mathbb K[p]\)-module of rank \(1\) or \(2\) over \(\mathbb K[p]\) and point out a criterion of being a module of rank \(2\). These results are used to obtain a class of integrable autonomous systems of differential equations.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186
work_keys_str_mv AT efimovdi centralizersofjacobianderivations
AT petravchukap centralizersofjacobianderivations
AT sydorovms centralizersofjacobianderivations
first_indexed 2024-04-12T06:26:09Z
last_indexed 2024-04-12T06:26:09Z
_version_ 1796109218978201600