Centralizers of Jacobian derivations
Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobi...
Gespeichert in:
Datum: | 2023 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2023
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2186 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-21862023-12-11T16:21:07Z Centralizers of Jacobian derivations Efimov, D. I. Petravchuk, A. P. Sydorov, M. S. Lie algebra, Jacobian derivation, differential equation, centralizer, integrable system Primary 17B66; Secondary 17B80 Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobian derivation if there exists \(f \in \mathbb K[x, y]\) such that \(D(h) = \det J(f, h)\) for any \(h \in \mathbb K[x, y]\) (here \(J(f, h)\) is the Jacobian matrix for \(f\) and \(h\)). Such a derivation is denoted by \(D_f\) . The kernel of \(D_f\) in \(\mathbb K[x, y]\) is a subalgebra \(\mathbb K[p]\) where \(p=p(x, y)\) is a polynomial of smallest degree such that \(f(x, y) = \varphi (p(x, y))\) for some \(\varphi (t) \in \mathbb K[t]\). Let \(C = C_{W_2(\mathbb K)} (D_f)\) be the centralizer of \(D_f\) in \(W_2(\mathbb K)\). We prove that \(C\) is the free \(\mathbb K[p]\)-module of rank \(1\) or \(2\) over \(\mathbb K[p]\) and point out a criterion of being a module of rank \(2\). These results are used to obtain a class of integrable autonomous systems of differential equations. Lugansk National Taras Shevchenko University 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186 10.12958/adm2186 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2186/1138 Copyright (c) 2023 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Lie algebra Jacobian derivation differential equation centralizer integrable system Primary 17B66; Secondary 17B80 |
spellingShingle |
Lie algebra Jacobian derivation differential equation centralizer integrable system Primary 17B66; Secondary 17B80 Efimov, D. I. Petravchuk, A. P. Sydorov, M. S. Centralizers of Jacobian derivations |
topic_facet |
Lie algebra Jacobian derivation differential equation centralizer integrable system Primary 17B66; Secondary 17B80 |
format |
Article |
author |
Efimov, D. I. Petravchuk, A. P. Sydorov, M. S. |
author_facet |
Efimov, D. I. Petravchuk, A. P. Sydorov, M. S. |
author_sort |
Efimov, D. I. |
title |
Centralizers of Jacobian derivations |
title_short |
Centralizers of Jacobian derivations |
title_full |
Centralizers of Jacobian derivations |
title_fullStr |
Centralizers of Jacobian derivations |
title_full_unstemmed |
Centralizers of Jacobian derivations |
title_sort |
centralizers of jacobian derivations |
description |
Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobian derivation if there exists \(f \in \mathbb K[x, y]\) such that \(D(h) = \det J(f, h)\) for any \(h \in \mathbb K[x, y]\) (here \(J(f, h)\) is the Jacobian matrix for \(f\) and \(h\)). Such a derivation is denoted by \(D_f\) . The kernel of \(D_f\) in \(\mathbb K[x, y]\) is a subalgebra \(\mathbb K[p]\) where \(p=p(x, y)\) is a polynomial of smallest degree such that \(f(x, y) = \varphi (p(x, y))\) for some \(\varphi (t) \in \mathbb K[t]\). Let \(C = C_{W_2(\mathbb K)} (D_f)\) be the centralizer of \(D_f\) in \(W_2(\mathbb K)\). We prove that \(C\) is the free \(\mathbb K[p]\)-module of rank \(1\) or \(2\) over \(\mathbb K[p]\) and point out a criterion of being a module of rank \(2\). These results are used to obtain a class of integrable autonomous systems of differential equations. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2023 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186 |
work_keys_str_mv |
AT efimovdi centralizersofjacobianderivations AT petravchukap centralizersofjacobianderivations AT sydorovms centralizersofjacobianderivations |
first_indexed |
2024-04-12T06:26:09Z |
last_indexed |
2024-04-12T06:26:09Z |
_version_ |
1796109218978201600 |