Centralizers of Jacobian derivations

Let \(\mathbb K\) be an algebraically closed field of characteristic zero, \(\mathbb K[x, y]\) the polynomial ring in variables \(x\), \(y\) and let \(W_2(\mathbb K)\) be the Lie algebra of all \(\mathbb K\)-derivations on \(\mathbb K[x, y]\). A derivation \(D \in W_2(\mathbb K)\) is called a Jacobi...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Efimov, D. I., Petravchuk, A. P., Sydorov, M. S.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2023
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2186
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics