Low-dimensional nilpotent Leibniz algebras and their automorphism groups

Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a Leibniz algebra if it satisfies the Leibniz identity: \([a,[b,c]]=[[a,b],c]+[b,[a,c]]\) for all \(a,b,c\in L\). A linear transformation \(f\) of \(L\) is called an endomorphism of \(L\), i...

Full description

Saved in:
Bibliographic Details
Date:2024
Main Authors: Minaiev, Pavlo Ye., Pypka, Oleksandr O., Semko, Larysa P.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2024
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2264
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics