The inverse semigroup of all fence-preserving injections and its maximal subsemigroups

In this paper, we study the inverse semigroup \(IF_{n}\) of all partial injections \(\alpha\) on an \(n\)-element set such that both \(\alpha\) and \(\alpha^{-1}\) are fence-preserving (preserve the zig-zag order). The main result of this paper is the characterization of the maximal subsemigroups of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Passararat, Boonnisa, Koppitz, Jörg
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2025
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2353
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:In this paper, we study the inverse semigroup \(IF_{n}\) of all partial injections \(\alpha\) on an \(n\)-element set such that both \(\alpha\) and \(\alpha^{-1}\) are fence-preserving (preserve the zig-zag order). The main result of this paper is the characterization of the maximal subsemigroups of \(IF_{n}\): There are five types of maximal subsemigroups, whenever \(n\) is odd; if \(n\) is even, then the maximal semigroups are of the form \(IF_{n}\setminus \{\alpha \}\), where \(\alpha\) belongs to the least generating set of \(IF_{n}\). Moreover, we describe the i-conjugate elements in \(IF_{n}\).