Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form

Let \(G\) be a finite undirected connected graph. The minimum number of edges that must be removed to make the graph acyclic is called the circuit rank of \(G\). If such edges are fixed, the graph that remains is called a spanning tree of \(G\). In this paper we study scanning trees of the Hasse dia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Bondarenko, Vitaliy M., Styopochkina, Maryna V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2025
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics