On the saturations of submodules

Let \(R\subseteq S\) be a ring extension, and let \(A\) be an \(R\)-submodule of \(S\). The saturation of \(A\) (in \(S\)) by \(\tau\) is set \(A_{[\tau] }= \left\{x\in S : tx\in A  \text{ for some } t\in \tau\right\}\), where \(\tau\) is a multiplicative subset of \(R\). We study properties of satu...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Paudel, Lokendra, Tchamna, Simplice
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/361
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-361
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-3612018-10-20T08:02:25Z On the saturations of submodules Paudel, Lokendra Tchamna, Simplice saturation, star operation, ring extension 13A15, 13A18, 13B02 Let \(R\subseteq S\) be a ring extension, and let \(A\) be an \(R\)-submodule of \(S\). The saturation of \(A\) (in \(S\)) by \(\tau\) is set \(A_{[\tau] }= \left\{x\in S : tx\in A  \text{ for some } t\in \tau\right\}\), where \(\tau\) is a multiplicative subset of \(R\). We study properties of saturations of \(R\)-submodules of \(S\). We use this notion of saturation to characterize star operations \(\star\) on ring extensions \(R\subseteq S\) satisfying the relation \((A\cap B)^{\star} = A^{\star}\cap B^{\star}\) whenever \(A\) and \(B\) are two \(R\)-submodules of \(S\) such that \(AS= BS = S\). Lugansk National Taras Shevchenko University 2018-10-20 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/361 Algebra and Discrete Mathematics; Vol 26, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/361/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/361/151 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-10-20T08:02:25Z
collection OJS
language English
topic saturation
star operation
ring extension
13A15
13A18
13B02
spellingShingle saturation
star operation
ring extension
13A15
13A18
13B02
Paudel, Lokendra
Tchamna, Simplice
On the saturations of submodules
topic_facet saturation
star operation
ring extension
13A15
13A18
13B02
format Article
author Paudel, Lokendra
Tchamna, Simplice
author_facet Paudel, Lokendra
Tchamna, Simplice
author_sort Paudel, Lokendra
title On the saturations of submodules
title_short On the saturations of submodules
title_full On the saturations of submodules
title_fullStr On the saturations of submodules
title_full_unstemmed On the saturations of submodules
title_sort on the saturations of submodules
description Let \(R\subseteq S\) be a ring extension, and let \(A\) be an \(R\)-submodule of \(S\). The saturation of \(A\) (in \(S\)) by \(\tau\) is set \(A_{[\tau] }= \left\{x\in S : tx\in A  \text{ for some } t\in \tau\right\}\), where \(\tau\) is a multiplicative subset of \(R\). We study properties of saturations of \(R\)-submodules of \(S\). We use this notion of saturation to characterize star operations \(\star\) on ring extensions \(R\subseteq S\) satisfying the relation \((A\cap B)^{\star} = A^{\star}\cap B^{\star}\) whenever \(A\) and \(B\) are two \(R\)-submodules of \(S\) such that \(AS= BS = S\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/361
work_keys_str_mv AT paudellokendra onthesaturationsofsubmodules
AT tchamnasimplice onthesaturationsofsubmodules
first_indexed 2025-07-17T10:33:43Z
last_indexed 2025-07-17T10:33:43Z
_version_ 1837889931002773504