On a common generalization of symmetric rings and quasi duo rings

Let \(J(R)\) denote the Jacobson radical of a ring \(R\). We call a ring \(R\) as \(J\)-symmetric if for any \(a,b, c\in R, abc=0\) implies \(bac\in J(R)\). It turns out that \(J\)-symmetric rings are a common generalization of left (right) quasi-duo rings and  generalized weakly symmetric rings. Va...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Subedi, T., Roy, D.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозиторії

Algebra and Discrete Mathematics