On a common generalization of symmetric rings and quasi duo rings
Let \(J(R)\) denote the Jacobson radical of a ring \(R\). We call a ring \(R\) as \(J\)-symmetric if for any \(a,b, c\in R, abc=0\) implies \(bac\in J(R)\). It turns out that \(J\)-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Va...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-493 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-4932020-07-08T07:13:20Z On a common generalization of symmetric rings and quasi duo rings Subedi, T. Roy, D. symmetric ring, Jacobson radical, $J$-symmetric ring 13C99, 16D80, 16U80 Let \(J(R)\) denote the Jacobson radical of a ring \(R\). We call a ring \(R\) as \(J\)-symmetric if for any \(a,b, c\in R, abc=0\) implies \(bac\in J(R)\). It turns out that \(J\)-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left SF-rings are generalized. Lugansk National Taras Shevchenko University 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493 10.12958/adm493 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493/pdf Copyright (c) 2020 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
symmetric ring Jacobson radical $J$-symmetric ring 13C99 16D80 16U80 |
spellingShingle |
symmetric ring Jacobson radical $J$-symmetric ring 13C99 16D80 16U80 Subedi, T. Roy, D. On a common generalization of symmetric rings and quasi duo rings |
topic_facet |
symmetric ring Jacobson radical $J$-symmetric ring 13C99 16D80 16U80 |
format |
Article |
author |
Subedi, T. Roy, D. |
author_facet |
Subedi, T. Roy, D. |
author_sort |
Subedi, T. |
title |
On a common generalization of symmetric rings and quasi duo rings |
title_short |
On a common generalization of symmetric rings and quasi duo rings |
title_full |
On a common generalization of symmetric rings and quasi duo rings |
title_fullStr |
On a common generalization of symmetric rings and quasi duo rings |
title_full_unstemmed |
On a common generalization of symmetric rings and quasi duo rings |
title_sort |
on a common generalization of symmetric rings and quasi duo rings |
description |
Let \(J(R)\) denote the Jacobson radical of a ring \(R\). We call a ring \(R\) as \(J\)-symmetric if for any \(a,b, c\in R, abc=0\) implies \(bac\in J(R)\). It turns out that \(J\)-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left SF-rings are generalized. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2020 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493 |
work_keys_str_mv |
AT subedit onacommongeneralizationofsymmetricringsandquasiduorings AT royd onacommongeneralizationofsymmetricringsandquasiduorings |
first_indexed |
2024-04-12T06:26:12Z |
last_indexed |
2024-04-12T06:26:12Z |
_version_ |
1796109209504317440 |