On a common generalization of symmetric rings and quasi duo rings

Let \(J(R)\) denote the Jacobson radical of a ring \(R\). We call a ring \(R\) as \(J\)-symmetric if for any \(a,b, c\in R, abc=0\) implies \(bac\in J(R)\). It turns out that \(J\)-symmetric rings are a common generalization of left (right) quasi-duo rings and  generalized weakly symmetric rings. Va...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Subedi, T., Roy, D.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-493
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-4932020-07-08T07:13:20Z On a common generalization of symmetric rings and quasi duo rings Subedi, T. Roy, D. symmetric ring, Jacobson radical, $J$-symmetric ring 13C99, 16D80, 16U80 Let \(J(R)\) denote the Jacobson radical of a ring \(R\). We call a ring \(R\) as \(J\)-symmetric if for any \(a,b, c\in R, abc=0\) implies \(bac\in J(R)\). It turns out that \(J\)-symmetric rings are a common generalization of left (right) quasi-duo rings and  generalized weakly symmetric rings. Various properties of these rings are established and   some results on exchange rings and the regularity of left SF-rings are generalized. Lugansk National Taras Shevchenko University 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493 10.12958/adm493 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493/pdf Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic symmetric ring
Jacobson radical
$J$-symmetric ring
13C99
16D80
16U80
spellingShingle symmetric ring
Jacobson radical
$J$-symmetric ring
13C99
16D80
16U80
Subedi, T.
Roy, D.
On a common generalization of symmetric rings and quasi duo rings
topic_facet symmetric ring
Jacobson radical
$J$-symmetric ring
13C99
16D80
16U80
format Article
author Subedi, T.
Roy, D.
author_facet Subedi, T.
Roy, D.
author_sort Subedi, T.
title On a common generalization of symmetric rings and quasi duo rings
title_short On a common generalization of symmetric rings and quasi duo rings
title_full On a common generalization of symmetric rings and quasi duo rings
title_fullStr On a common generalization of symmetric rings and quasi duo rings
title_full_unstemmed On a common generalization of symmetric rings and quasi duo rings
title_sort on a common generalization of symmetric rings and quasi duo rings
description Let \(J(R)\) denote the Jacobson radical of a ring \(R\). We call a ring \(R\) as \(J\)-symmetric if for any \(a,b, c\in R, abc=0\) implies \(bac\in J(R)\). It turns out that \(J\)-symmetric rings are a common generalization of left (right) quasi-duo rings and  generalized weakly symmetric rings. Various properties of these rings are established and   some results on exchange rings and the regularity of left SF-rings are generalized.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/493
work_keys_str_mv AT subedit onacommongeneralizationofsymmetricringsandquasiduorings
AT royd onacommongeneralizationofsymmetricringsandquasiduorings
first_indexed 2024-04-12T06:26:12Z
last_indexed 2024-04-12T06:26:12Z
_version_ 1796109209504317440