Commutator subgroups of the power subgroups of generalized Hecke groups

Let \(p\), \(q\geq 2\) be relatively prime integers and let \(H_{p,q}\) be the generalized Hecke group associated to \(p\) and \(q\). The generalized Hecke group \(H_{p,q}\) is generated by \(X(z)=-(z-\lambda _{p})^{-1}\) and \(Y(z)=-(z+\lambda_{q})^{-1}\) where \(\lambda _{p}=2\cos \frac{\pi }{p}\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Koruoğlu, Özden, Meral, Taner, Sahin, Recep
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/597
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-597
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-5972019-07-14T19:54:06Z Commutator subgroups of the power subgroups of generalized Hecke groups Koruoğlu, Özden Meral, Taner Sahin, Recep generalized Hecke groups, power subgroups, commutator subgroups 20H10, 11F06 Let \(p\), \(q\geq 2\) be relatively prime integers and let \(H_{p,q}\) be the generalized Hecke group associated to \(p\) and \(q\). The generalized Hecke group \(H_{p,q}\) is generated by \(X(z)=-(z-\lambda _{p})^{-1}\) and \(Y(z)=-(z+\lambda_{q})^{-1}\) where \(\lambda _{p}=2\cos \frac{\pi }{p}\) and \(\lambda_{q}=2\cos \frac{\pi }{q}\). In this paper, for positive integer \(m\), we study the commutator subgroups \((H_{p,q}^{m})'\) of the power subgroups \(H_{p,q}^{m}\) of generalized Hecke groups \(H_{p,q}\). We give an application related with the derived series for all triangle groups of the form \((0;p,q,n)\), for distinct primes \(p\), \(q\) and for positive integer \(n\). Lugansk National Taras Shevchenko University 2019-07-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/597 Algebra and Discrete Mathematics; Vol 27, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/597/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/597/284 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-07-14T19:54:06Z
collection OJS
language English
topic generalized Hecke groups
power subgroups
commutator subgroups
20H10
11F06
spellingShingle generalized Hecke groups
power subgroups
commutator subgroups
20H10
11F06
Koruoğlu, Özden
Meral, Taner
Sahin, Recep
Commutator subgroups of the power subgroups of generalized Hecke groups
topic_facet generalized Hecke groups
power subgroups
commutator subgroups
20H10
11F06
format Article
author Koruoğlu, Özden
Meral, Taner
Sahin, Recep
author_facet Koruoğlu, Özden
Meral, Taner
Sahin, Recep
author_sort Koruoğlu, Özden
title Commutator subgroups of the power subgroups of generalized Hecke groups
title_short Commutator subgroups of the power subgroups of generalized Hecke groups
title_full Commutator subgroups of the power subgroups of generalized Hecke groups
title_fullStr Commutator subgroups of the power subgroups of generalized Hecke groups
title_full_unstemmed Commutator subgroups of the power subgroups of generalized Hecke groups
title_sort commutator subgroups of the power subgroups of generalized hecke groups
description Let \(p\), \(q\geq 2\) be relatively prime integers and let \(H_{p,q}\) be the generalized Hecke group associated to \(p\) and \(q\). The generalized Hecke group \(H_{p,q}\) is generated by \(X(z)=-(z-\lambda _{p})^{-1}\) and \(Y(z)=-(z+\lambda_{q})^{-1}\) where \(\lambda _{p}=2\cos \frac{\pi }{p}\) and \(\lambda_{q}=2\cos \frac{\pi }{q}\). In this paper, for positive integer \(m\), we study the commutator subgroups \((H_{p,q}^{m})'\) of the power subgroups \(H_{p,q}^{m}\) of generalized Hecke groups \(H_{p,q}\). We give an application related with the derived series for all triangle groups of the form \((0;p,q,n)\), for distinct primes \(p\), \(q\) and for positive integer \(n\).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/597
work_keys_str_mv AT koruogluozden commutatorsubgroupsofthepowersubgroupsofgeneralizedheckegroups
AT meraltaner commutatorsubgroupsofthepowersubgroupsofgeneralizedheckegroups
AT sahinrecep commutatorsubgroupsofthepowersubgroupsofgeneralizedheckegroups
first_indexed 2025-07-17T10:32:03Z
last_indexed 2025-07-17T10:32:03Z
_version_ 1837889825935458304