Thin systems of generators of groups

A subset \(T\) of a group \(G\) with the identity \(e\) is called \(k\)-thin (\(k\in\mathbb{N}\)) if \(|A\cap gA|\leqslant k\), \(|A\cap Ag|\leqslant k\) for every  \(g\in G\), \(g\ne e\). We show that every infinite group \(G\) can be generated by some 2-thin subset. Moreover, if \(G\) is either Ab...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Lutsenko, Ievgen
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/634
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-634
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6342018-04-04T09:11:25Z Thin systems of generators of groups Lutsenko, Ievgen small, P-small, \(k\)-thin subsets of groups 20F05, 20F99 A subset \(T\) of a group \(G\) with the identity \(e\) is called \(k\)-thin (\(k\in\mathbb{N}\)) if \(|A\cap gA|\leqslant k\), \(|A\cap Ag|\leqslant k\) for every  \(g\in G\), \(g\ne e\). We show that every infinite group \(G\) can be generated by some 2-thin subset. Moreover, if \(G\) is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin system of generators of \(G\). For every infinite group \(G\), there exist a 2-thin subset \(X\) such that \(G=XX^{-1}\cup X^{-1}X\), and a 4-thin subset \(Y\) such that \(G=YY^{-1}\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/634 Algebra and Discrete Mathematics; Vol 9, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/634/168 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic small
P-small
\(k\)-thin subsets of groups
20F05
20F99
spellingShingle small
P-small
\(k\)-thin subsets of groups
20F05
20F99
Lutsenko, Ievgen
Thin systems of generators of groups
topic_facet small
P-small
\(k\)-thin subsets of groups
20F05
20F99
format Article
author Lutsenko, Ievgen
author_facet Lutsenko, Ievgen
author_sort Lutsenko, Ievgen
title Thin systems of generators of groups
title_short Thin systems of generators of groups
title_full Thin systems of generators of groups
title_fullStr Thin systems of generators of groups
title_full_unstemmed Thin systems of generators of groups
title_sort thin systems of generators of groups
description A subset \(T\) of a group \(G\) with the identity \(e\) is called \(k\)-thin (\(k\in\mathbb{N}\)) if \(|A\cap gA|\leqslant k\), \(|A\cap Ag|\leqslant k\) for every  \(g\in G\), \(g\ne e\). We show that every infinite group \(G\) can be generated by some 2-thin subset. Moreover, if \(G\) is either Abelian or a torsion group without elements of order 2, then there exists a 1-thin system of generators of \(G\). For every infinite group \(G\), there exist a 2-thin subset \(X\) such that \(G=XX^{-1}\cup X^{-1}X\), and a 4-thin subset \(Y\) such that \(G=YY^{-1}\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/634
work_keys_str_mv AT lutsenkoievgen thinsystemsofgeneratorsofgroups
first_indexed 2024-04-12T06:27:27Z
last_indexed 2024-04-12T06:27:27Z
_version_ 1796109251441065984