Partitions of groups and matroids into independent subsets
Can the set \(\mathbb{R}\setminus\{0\}\) be covered by countably many linearly (algebraically) independent subsets over the field \(\mathbb{Q}\)? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/637 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |