Partitions of groups and matroids into independent subsets
Can the set \(\mathbb{R}\setminus\{0\}\) be covered by countably many linearly (algebraically) independent subsets over the field \(\mathbb{Q}\)? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | Banakh, Taras, Protasov, Igor |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/637 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Prethick subsets in partitions of groups
von: Protasov, Igor, et al.
Veröffentlicht: (2018) -
Binary matroids that classify forests
von: Traldi, L.
Veröffentlicht: (2022) -
Densities, submeasures and partitions of groups
von: Banakh, Taras, et al.
Veröffentlicht: (2018) -
Partitions of groups and matroids into independent subsets
von: Banakh, T., et al.
Veröffentlicht: (2010) -
Recurrence sequences over residual rings
von: Sanchez, S., et al.
Veröffentlicht: (2018)