\(2\)-Galois groups and the Kaplansky radical
An accurate description of the Galois group \(G_{F}(2)\) of the maximal Galois \(2\)-extension of a field \(F\) may be given for fields \(F\) admitting a \(2\)-henselian valuation ring. In this note we generalize this result by characterizing the fields for which \({G_{F}{(2)}}\) decomposes as a fre...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/649 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | An accurate description of the Galois group \(G_{F}(2)\) of the maximal Galois \(2\)-extension of a field \(F\) may be given for fields \(F\) admitting a \(2\)-henselian valuation ring. In this note we generalize this result by characterizing the fields for which \({G_{F}{(2)}}\) decomposes as a free pro-\(2\) product \(\mathcal{F}*\mathcal{H}\) where \(\mathcal{F}\) is a free closed subgroup of \({G_{F}{(2)}}\) and \(\mathcal{H}\) is the Galois group of a \(2\)-henselian extension of \(F\). The free product decomposition of \({G_{F}{(2)}}\) is equivalent to the existence of a valuation ring compatible with the Kaplansky radical of \(F\). Fields with Kaplansky radical fulfilling prescribed conditions are constructed, as an application. |
|---|