Partitions of groups into sparse subsets

A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Protasov, Igor
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If \(|G| > (\kappa^+)^{\aleph_0}\) then \(\eta(G) > \kappa\), if  \(|G| \leqslant \kappa^+\) then \(\eta(G) \leqslant \kappa\).  We show also that \(cov(A) \geqslant cf|G|\) for each sparse subset \(A\) of an infinite group \(G\), where \(cov(A)=\min\{|X|: G = XA\}.\)