Partitions of groups into sparse subsets
A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-695 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-6952018-04-04T09:42:12Z Partitions of groups into sparse subsets Protasov, Igor partition of a group, sparse subset of a group 03E75, 20F99, 20K99 A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If \(|G| > (\kappa^+)^{\aleph_0}\) then \(\eta(G) > \kappa\), if \(|G| \leqslant \kappa^+\) then \(\eta(G) \leqslant \kappa\). We show also that \(cov(A) \geqslant cf|G|\) for each sparse subset \(A\) of an infinite group \(G\), where \(cov(A)=\min\{|X|: G = XA\}.\) Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695 Algebra and Discrete Mathematics; Vol 13, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695/228 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-04T09:42:12Z |
| collection |
OJS |
| language |
English |
| topic |
partition of a group sparse subset of a group 03E75 20F99 20K99 |
| spellingShingle |
partition of a group sparse subset of a group 03E75 20F99 20K99 Protasov, Igor Partitions of groups into sparse subsets |
| topic_facet |
partition of a group sparse subset of a group 03E75 20F99 20K99 |
| format |
Article |
| author |
Protasov, Igor |
| author_facet |
Protasov, Igor |
| author_sort |
Protasov, Igor |
| title |
Partitions of groups into sparse subsets |
| title_short |
Partitions of groups into sparse subsets |
| title_full |
Partitions of groups into sparse subsets |
| title_fullStr |
Partitions of groups into sparse subsets |
| title_full_unstemmed |
Partitions of groups into sparse subsets |
| title_sort |
partitions of groups into sparse subsets |
| description |
A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If \(|G| > (\kappa^+)^{\aleph_0}\) then \(\eta(G) > \kappa\), if \(|G| \leqslant \kappa^+\) then \(\eta(G) \leqslant \kappa\). We show also that \(cov(A) \geqslant cf|G|\) for each sparse subset \(A\) of an infinite group \(G\), where \(cov(A)=\min\{|X|: G = XA\}.\) |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695 |
| work_keys_str_mv |
AT protasovigor partitionsofgroupsintosparsesubsets |
| first_indexed |
2025-07-17T10:32:49Z |
| last_indexed |
2025-07-17T10:32:49Z |
| _version_ |
1837889874719408128 |