Partitions of groups into sparse subsets

A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Protasov, Igor
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-695
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6952018-04-04T09:42:12Z Partitions of groups into sparse subsets Protasov, Igor partition of a group, sparse subset of a group 03E75, 20F99, 20K99 A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If \(|G| > (\kappa^+)^{\aleph_0}\) then \(\eta(G) > \kappa\), if  \(|G| \leqslant \kappa^+\) then \(\eta(G) \leqslant \kappa\).  We show also that \(cov(A) \geqslant cf|G|\) for each sparse subset \(A\) of an infinite group \(G\), where \(cov(A)=\min\{|X|: G = XA\}.\) Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695 Algebra and Discrete Mathematics; Vol 13, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695/228 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:42:12Z
collection OJS
language English
topic partition of a group
sparse subset of a group
03E75
20F99
20K99
spellingShingle partition of a group
sparse subset of a group
03E75
20F99
20K99
Protasov, Igor
Partitions of groups into sparse subsets
topic_facet partition of a group
sparse subset of a group
03E75
20F99
20K99
format Article
author Protasov, Igor
author_facet Protasov, Igor
author_sort Protasov, Igor
title Partitions of groups into sparse subsets
title_short Partitions of groups into sparse subsets
title_full Partitions of groups into sparse subsets
title_fullStr Partitions of groups into sparse subsets
title_full_unstemmed Partitions of groups into sparse subsets
title_sort partitions of groups into sparse subsets
description A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If \(|G| > (\kappa^+)^{\aleph_0}\) then \(\eta(G) > \kappa\), if  \(|G| \leqslant \kappa^+\) then \(\eta(G) \leqslant \kappa\).  We show also that \(cov(A) \geqslant cf|G|\) for each sparse subset \(A\) of an infinite group \(G\), where \(cov(A)=\min\{|X|: G = XA\}.\)
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695
work_keys_str_mv AT protasovigor partitionsofgroupsintosparsesubsets
first_indexed 2025-07-17T10:32:49Z
last_indexed 2025-07-17T10:32:49Z
_version_ 1837889874719408128