Partitions of groups into sparse subsets
A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | Protasov, Igor |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Partitions of groups into thin subsets
von: Protasov, Igor
Veröffentlicht: (2018) -
Prethick subsets in partitions of groups
von: Protasov, Igor, et al.
Veröffentlicht: (2018) -
Thin systems of generators of groups
von: Lutsenko, Ievgen
Veröffentlicht: (2018) -
Partitions of groups and matroids into independent subsets
von: Banakh, Taras, et al.
Veröffentlicht: (2018) -
On dimension of product of groups
von: Dranishnikov, Alexander
Veröffentlicht: (2020)