Generalised triangle groups of type \((3,q,2)\)
If \(G\) is a group with a presentation of the form \(\langle x,y|x^3=y^q=W(x,y)^2=1\rangle\), then either \(G\) is virtually soluble or \(G\) contains a free subgroup of rank \(2\). This provides additional evidence in favour of a conjecture of Rosenberger.
Gespeichert in:
Datum: | 2018 |
---|---|
1. Verfasser: | Howie, James |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
The Tits alternative for generalized triangle groups of type \((3,4,2)\)
von: Howie, James, et al.
Veröffentlicht: (2018) -
On the Tits alternative for some generalized triangle groups
von: Beniash-Kryvets, Valery, et al.
Veröffentlicht: (2018) -
On fibers and accessibility of groups acting on trees with inversions
von: Mahmood, Rasheed Mahmood Saleh
Veröffentlicht: (2015) -
On the condensation property of the Lamplighter groups and groups of intermediate growth
von: Benli, Mustafa Gökhan, et al.
Veröffentlicht: (2018) -
S. N. Chernikov and the development of infinite group theory
von: Dixon, M. R., et al.
Veröffentlicht: (2018)