Algebra in superextensions of groups, I: zeros and commutativity

Given a group \(X\) we study the algebraic structure of its superextension \(\lambda(X)\). This is a right-topological semigroup consisting of all maximal linked systems on \(X\) endowed with the operation   \(\mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\}\)  t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: T. Banakh, T., Gavrylkiv, V., Nykyforchyn, O.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/815
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-815
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8152018-03-22T09:42:02Z Algebra in superextensions of groups, I: zeros and commutativity T. Banakh, T. Gavrylkiv, V. Nykyforchyn, O. Superextension, right-topological semigroup 20M99, 54B20 Given a group \(X\) we study the algebraic structure of its superextension \(\lambda(X)\). This is a right-topological semigroup consisting of all maximal linked systems on \(X\) endowed with the operation   \(\mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\}\)  that extends the group operation of \(X\). We characterize right zeros of \(\lambda(X)\) as invariant maximal linked systems on \(X\) and prove that \(\lambda(X)\) has a right zero if and only if each element of \(X\) has odd order. On the other hand, the semigroup \(\lambda(X)\) contains a left zero if and only if it contains a zero if and only if \(X\) has odd order \(|X|\le5\). The semigroup \(\lambda(X)\) is commutative if and only if \(|X|\le4\). We finish the paper with a complete description of the algebraic structure of the semigroups \(\lambda(X)\) for all groups \(X\) of cardinality \(|X|\le5\). Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/815 Algebra and Discrete Mathematics; Vol 7, No 3 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/815/345 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-22T09:42:02Z
collection OJS
language English
topic Superextension
right-topological semigroup
20M99
54B20
spellingShingle Superextension
right-topological semigroup
20M99
54B20
T. Banakh, T.
Gavrylkiv, V.
Nykyforchyn, O.
Algebra in superextensions of groups, I: zeros and commutativity
topic_facet Superextension
right-topological semigroup
20M99
54B20
format Article
author T. Banakh, T.
Gavrylkiv, V.
Nykyforchyn, O.
author_facet T. Banakh, T.
Gavrylkiv, V.
Nykyforchyn, O.
author_sort T. Banakh, T.
title Algebra in superextensions of groups, I: zeros and commutativity
title_short Algebra in superextensions of groups, I: zeros and commutativity
title_full Algebra in superextensions of groups, I: zeros and commutativity
title_fullStr Algebra in superextensions of groups, I: zeros and commutativity
title_full_unstemmed Algebra in superextensions of groups, I: zeros and commutativity
title_sort algebra in superextensions of groups, i: zeros and commutativity
description Given a group \(X\) we study the algebraic structure of its superextension \(\lambda(X)\). This is a right-topological semigroup consisting of all maximal linked systems on \(X\) endowed with the operation   \(\mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\}\)  that extends the group operation of \(X\). We characterize right zeros of \(\lambda(X)\) as invariant maximal linked systems on \(X\) and prove that \(\lambda(X)\) has a right zero if and only if each element of \(X\) has odd order. On the other hand, the semigroup \(\lambda(X)\) contains a left zero if and only if it contains a zero if and only if \(X\) has odd order \(|X|\le5\). The semigroup \(\lambda(X)\) is commutative if and only if \(|X|\le4\). We finish the paper with a complete description of the algebraic structure of the semigroups \(\lambda(X)\) for all groups \(X\) of cardinality \(|X|\le5\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/815
work_keys_str_mv AT tbanakht algebrainsuperextensionsofgroupsizerosandcommutativity
AT gavrylkivv algebrainsuperextensionsofgroupsizerosandcommutativity
AT nykyforchyno algebrainsuperextensionsofgroupsizerosandcommutativity
first_indexed 2025-07-17T10:33:56Z
last_indexed 2025-07-17T10:33:56Z
_version_ 1837889945397624832