Algebra in superextensions of groups, I: zeros and commutativity
Given a group \(X\) we study the algebraic structure of its superextension \(\lambda(X)\). This is a right-topological semigroup consisting of all maximal linked systems on \(X\) endowed with the operation \(\mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\}\) t...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/815 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-815 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-8152018-03-22T09:42:02Z Algebra in superextensions of groups, I: zeros and commutativity T. Banakh, T. Gavrylkiv, V. Nykyforchyn, O. Superextension, right-topological semigroup 20M99, 54B20 Given a group \(X\) we study the algebraic structure of its superextension \(\lambda(X)\). This is a right-topological semigroup consisting of all maximal linked systems on \(X\) endowed with the operation \(\mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\}\) that extends the group operation of \(X\). We characterize right zeros of \(\lambda(X)\) as invariant maximal linked systems on \(X\) and prove that \(\lambda(X)\) has a right zero if and only if each element of \(X\) has odd order. On the other hand, the semigroup \(\lambda(X)\) contains a left zero if and only if it contains a zero if and only if \(X\) has odd order \(|X|\le5\). The semigroup \(\lambda(X)\) is commutative if and only if \(|X|\le4\). We finish the paper with a complete description of the algebraic structure of the semigroups \(\lambda(X)\) for all groups \(X\) of cardinality \(|X|\le5\). Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/815 Algebra and Discrete Mathematics; Vol 7, No 3 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/815/345 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-22T09:42:02Z |
| collection |
OJS |
| language |
English |
| topic |
Superextension right-topological semigroup 20M99 54B20 |
| spellingShingle |
Superextension right-topological semigroup 20M99 54B20 T. Banakh, T. Gavrylkiv, V. Nykyforchyn, O. Algebra in superextensions of groups, I: zeros and commutativity |
| topic_facet |
Superextension right-topological semigroup 20M99 54B20 |
| format |
Article |
| author |
T. Banakh, T. Gavrylkiv, V. Nykyforchyn, O. |
| author_facet |
T. Banakh, T. Gavrylkiv, V. Nykyforchyn, O. |
| author_sort |
T. Banakh, T. |
| title |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_short |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_full |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_fullStr |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_full_unstemmed |
Algebra in superextensions of groups, I: zeros and commutativity |
| title_sort |
algebra in superextensions of groups, i: zeros and commutativity |
| description |
Given a group \(X\) we study the algebraic structure of its superextension \(\lambda(X)\). This is a right-topological semigroup consisting of all maximal linked systems on \(X\) endowed with the operation \(\mathcal A\circ\mathcal B=\{C\subset X:\{x\in X:x^{-1}C\in\mathcal B\}\in\mathcal A\}\) that extends the group operation of \(X\). We characterize right zeros of \(\lambda(X)\) as invariant maximal linked systems on \(X\) and prove that \(\lambda(X)\) has a right zero if and only if each element of \(X\) has odd order. On the other hand, the semigroup \(\lambda(X)\) contains a left zero if and only if it contains a zero if and only if \(X\) has odd order \(|X|\le5\). The semigroup \(\lambda(X)\) is commutative if and only if \(|X|\le4\). We finish the paper with a complete description of the algebraic structure of the semigroups \(\lambda(X)\) for all groups \(X\) of cardinality \(|X|\le5\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/815 |
| work_keys_str_mv |
AT tbanakht algebrainsuperextensionsofgroupsizerosandcommutativity AT gavrylkivv algebrainsuperextensionsofgroupsizerosandcommutativity AT nykyforchyno algebrainsuperextensionsofgroupsizerosandcommutativity |
| first_indexed |
2025-07-17T10:33:56Z |
| last_indexed |
2025-07-17T10:33:56Z |
| _version_ |
1837889945397624832 |