R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach

In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive  some combinatorial properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Parvathi, M., Sivakumar, B., Tamilselvi, A.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics