2025-02-21T07:09:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-837%22&qt=morelikethis&rows=5
2025-02-21T07:09:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-837%22&qt=morelikethis&rows=5
2025-02-21T07:09:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-21T07:09:14-05:00 DEBUG: Deserialized SOLR response
R-S correspondence for the Hyper-octahedral group of type \(B_n\) - A different approach
In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive some combinatorial properties...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/837 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we develop a Robinson Schensted algorithm for the hyperoctahedral group of type \(B_n\) on partitions of \((\frac{1}{2}r(r+1)+2n)\) whose \(2-\)core is \(\delta_r, \ r \geq 0\) where \(\delta_r\) is the partition with parts \((r,r-1,\ldots,0)\). We derive some combinatorial properties associated with this correspondence. |
---|